翻訳と辞書 |
Resonant ultrasound spectroscopy : ウィキペディア英語版 | Resonant ultrasound spectroscopy Resonant ultrasound spectroscopy (RUS) is a laboratory technique whose use in geology and material science is for measuring fundamental material properties involving elasticity. This technique relies on the fact that solid objects have natural frequencies at which they vibrate when mechanically excited. The natural frequency depends on the elasticity, the size and the shape of the object; RUS exploits this property of solids to determine the elastic tensor of the material. The great advantage of this technique is that the entire elastic tensor is obtained from a single crystal sample in a single rapid measurement. At lower or more general frequencies, this method is known as acoustic resonance spectroscopy. == History ==
Interest in elastic properties made its entrance with 17th century philosophers, but the real theory of elasticity, indicating that the elastic constants of a material could be obtained by measuring sound velocities in that material, was summarized only two hundred of years later. In 1964, D. B. Frasier and R. C. LeCraw used the solution calculated in 1880 by G. Lamè and H. Lamb to solve the forward problem, and then inverted it graphically, in what may be the first RUS measurement. Nevertheless, we had to wait the participation of geophysics community, interested in determining the earth's interior structure, to solve also the inverse problem: in 1970 three geophysicists improved the previous method and introduced the term resonant sphere technique (RST). Excited by the encouraging results achieved with lunar samples, one of them gave one of his students the task of extending the method for use with cube shaped samples. This method, now known as the rectangular parallelepiped resonance (RPR) method, was further extended by I. Ohno in 1976. Finally, at the end of eighties, A. Migliori and J. Maynard expanded the limits of the technique in terms of loading and low-level electronic measurements, and with W. Visscher brought the computer algorithms to their current state, introducing the final term resonant ultrasound spectroscopy (RUS).
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Resonant ultrasound spectroscopy」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|